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Abstract. P systems with symport/antiport rules of a minimal size
(only one object passes in any direction in a communication step) were
recently proven to be computationally universal. The proof from [2] uses
systems with nine membranes. In this paper we improve this results, by
showing that six membranes suffice. The optimality of this result remains
open (we believe that the number of membranes can be reduced by one).

1 Introduction

The present paper deals with a class of P systems which has recently received
a considerable interest: the purely communicative ones, based on the biological
phenomena of symport/antiport.

P systems are distributed parallel computing models which abstract from
the structure and the functioning of the living cells. In short, we have a mem-
brane structure, consisting of several membranes embedded in a main membrane
(called the skin) and delimiting regions (Figure 1 illustrates these notions) where
multisets of certain objects are placed. In the basic variant, the objects evolve
according to given evolution rules, which are applied non-deterministically (the
rules to be used and the objects to evolve are randomly chosen) in a maximally
parallel manner (in each step, all objects which can evolve must evolve). The
objects can also be communicated from one region to another one. In this way,
we get transitions from a configuration of the system to the next one. A sequence
of transitions constitutes a computation; with each halting computation we asso-
ciate a result, the number of objects in an initially specified output membrane.
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Since these computing devices were introduced ([8]) several different classes
were considered. Many of them were proved to be computationally complete, able
to compute all Turing computable sets of natural numbers. When membrane di-
vision, membrane creation (or string-object replication) is allowed, NP-complete
problems are shown to be solved in polynomial time. Comprehensive details can
be found in the monograph [9], while information about the state of the art of the
domain can be found at the web address http://psystems.disco.unimib.it.
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Figure 1: A membrane structure
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A purely communicative variant of P systems was proposed in [7], modeling
a real life phenomenon, that of membrane transport in pairs of chemicals – see
[1]. When two chemicals pass through a membrane only together, in the same
direction, we say that we have a process of symport. When the two chemicals pass
only with the help of each other, but in opposite directions, the process is called
antiport. For uniformity, when a single chemical passes through a membrane,
one says that we have an uniport.

Technically, the rules modeling these biological phenomena and used in P
systems are of the forms (x, in), (x, out) (for symport), and (x, out; y, in) (for
antiport), where x, y are strings of symbols representing multisets of chemicals.
Thus, the only used rules govern the passage of objects through membranes, the
objects only change their places in the compartments of the membrane structure,
they never transform/evolve.

Somewhat surprisingly, computing by communication only, in this “osmotic”
manner, turned out to be computationally universal: by using only symport and
antiport rules we can compute all Turing computable sets of numbers, [7]. The
results from [7] were improved in several places – see, e.g., [3], [4], [6], [9] – in what
concerns the number of membranes used and/or the size of symport/antiport
rules.
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Recently, a rather unexpected result was reported in [2]: in order to get
the universality, minimal symport and antiport rules, that is of the forms
(a, in), (a, out), (a, out; b, in), where a, b are objects, are sufficient. The price was
to use nine membranes, much more than in the results from [3] and [4], for ex-
ample. The problem whether or not the number of membranes can be decreased
was formulated as an open problem in [2]. We contribute here to this question,
by improving the result from [2]: six membranes suffice. The proof uses the same
techniques as the proofs from [2], [4]: simulating a counter automaton by a P
system with minimal symport/antiport rules.

It is highly probable that our result is not optimal, but we conjecture that
it cannot be significantly improved; we believe that at most one membrane can
be saved.

2 Counter Automata

In this section we briefly recall the concept of counter automata, useful in the
proof of our main theorem. We follow here the style of [2] and [4]. Informally
speaking, a counter automaton is a finite state machine that has a finite number
of counters able to store values represented by natural numbers; the machine
runs a program consisting of instructions which can increase or decrease by one
the contents of registers, changing at the same time the state of the automaton;
starting with each counter empty, the machine performs a computation; if it
reaches a terminal state, then the number stored in a specified counter is said
to be generated during this computation. It is known (see, e.g., [5]) that counter
automata (of various types) are computationally universal, they can generate
exactly all Turing computable sets of natural numbers.

More formally, a counter automaton is a construct M = (Q, F, p0, C, cout, S),
where:

– Q is the set of the possible states,
– F ⊆ Q is the set of the final states,
– p0 ∈ Q is the start state,
– C is the set of the counters,
– cout ∈ C is the output counter,
– S is a finite set of instructions of the following forms:

(p → q, +c), with p, q ∈ Q, c ∈ C: add 1 to the value of the counter c
and move from state p into state q;
(p → q,−c), with p, q ∈ Q, c ∈ C: if the current value of the counter c is
not zero, then subtract 1 from the value of the counter c and move from
state p into state q; otherwise the computation is blocked in state p;
(p → q, c = 0), with p, q ∈ Q, c ∈ C: if the current value of the counter c
is zero, then move from state p into state q; otherwise the computation
is blocked in state p.
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A transition step in such a counter automaton consists in updating/checking
the value of a counter according to an instruction of one of the types presented
above and moving from a state to another one. Starting with the number zero
stored in each counter, we say that the counter automaton computes the value n
if and only if, starting from the initial state, the system reaches a final state after
a finite sequence of transitions, with n being the value of the output counter cout

at that moment.
Without loss of generality, we may assume that in the end of the computation

the automaton makes zero all the counters but the output counter; also, we may
assume that there are no transitions possible that start from a final state (this
is to avoid the automaton getting stuck in a final state).

As we have mentioned above, such counter automata are computationally
equivalent to Turing machines, and we will make below an essential use of this
result.

3 P Systems with Symport/Antiport Rules

The language theory notions we use here are standard, and can be found in any
of the many monographs available, for instance, in [11].

A membrane structure is pictorially represented by a Venn diagram (like the
one in Figure 1), and it will be represented here by a string of matching paren-
theses. For instance, the membrane structure from Figure 1 can be represented
by [1[2 ]2[3 ]3[4[5 ]5[6[8 ]8[9 ]9]6[7 ]7]4]1.

A multiset over a set X is a mapping M : X −→ N. Here we always use
multisets over finite sets X (that is, X will be an alphabet). A multiset with a
finite support can be represented by a string over X ; the number of occurrences
of a symbol a ∈ X in a string x ∈ X∗ represents the multiplicity of a in the
multiset represented by x. Clearly, all permutations of a string represent the
same multiset, and the empty multiset is represented by the empty string, λ.

We start from the biological observation that there are many cases where
two chemicals pass at the same time through a membrane, with the help of each
other, either in the same direction, or in opposite directions; in the first case we
say that we have a symport, in the second case we have an antiport (we refer to
[1] for details).

Mathematically, we can capture the idea of symport by considering rules of
the form (ab, in) and (ab, out) associated with a membrane, and stating that the
objects a, b can enter, respectively, exit the membrane together. For antiport we
consider rules of the form (a, out; b, in), stating that a exits and at the same time
b enters the membrane. Generalizing such kinds of rules, we can consider rules of
the unrestricted forms (x, in), (x, out) (generalized symport) and (x, out; y, in)
(generalized antiport), where x, y are non-empty strings representing multisets
of objects, without any restriction on the length of these strings.

Based on rules of this types, in [7] one introduces P systems with sym-
port/antiport as constructs

Π = (V, µ, w1, . . . , wm, E, R1, . . . , Rm, io),
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where:

– V is an alphabet (its elements are called objects);
– µ is a membrane structure consisting of m membranes, with the membranes

(and hence the regions) injectively labeled with 1, 2, . . . , m; m is called the
degree of Π ;

– wi, 1 ≤ i ≤ m, are strings over V representing multisets of objects associated
with the regions 1, 2, . . . , m of µ, present in the system at the beginning of
a computation;

– E ⊆ V is the set of objects which are supposed to continuously appear in
the environment in arbitrarily many copies;

– R1, . . . , Rm are finite sets of symport and antiport rules over the alphabet
V associated with the membranes 1, 2, . . . , m of µ;

– io is the label of an elementary membrane of µ (the output membrane).

For a symport rule (x, in) or (x, out), we say that |x| is the weight of the
rule. The weight of an antiport rule (x, out; y, in) is max{|x|, |y|}.

The rules from a set Ri are used with respect to membrane i as explained
above. In the case of (x, in), the multiset of objects x enters the region defined
by the membrane, from the surrounding region, which is the environment when
the rule is associated with the skin membrane. In the case of (x, out), the ob-
jects specified by x are sent out of membrane i, into the surrounding region;
in the case of the skin membrane, this is the environment. The use of a rule
(x, out; y, in) means expelling the objects specified by x from membrane i at the
same time with bringing the objects specified by y into membrane i. The objects
from E (in the environment) are supposed to appear in arbitrarily many copies;
since we only move objects from a membrane to another membrane and do not
create new objects in the system, we need a supply of objects in order to com-
pute with arbitrarily large multisets. The rules are used in the non-deterministic
maximally parallel manner specific to P systems with symbol objects: in each
step, a maximal number of rules is used (all objects which can change the region
should do it).

In this way, we obtain transitions between the configurations of the system.
A configuration is described by the m-tuple of multisets of objects present in
the m regions of the system, as well as the multiset of objects from V −E which
were sent out of the system during the computation; it is important to keep
track of such objects because they appear only in a finite number of copies in
the initial configuration and can enter the system again. On the other hand, it is
not necessary to take care of the objects from E which leave the system because
they appear in arbitrarily many copies in the environment as defined before (the
environment is supposed to be inexhaustible, irrespective how many copies of
an object from E are introduced into the system, still arbitrarily many remain
in the environment). The initial configuration is (w1, . . . , wm, λ). A sequence of
transitions is called a computation.

With any halting computation, we may associate an output represented by
the number of objects from V present in membrane io in the halting configu-
ration. The set of all such numbers computed by Π is denoted by N(Π). The
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family of all sets N(Π) computed by systems Π of degree at most m ≥ 1, using
symport rules of weight at most p and antiport rules of weight at most q, is
denoted by NOPm(symp, antiq) (we use here the notations from [9]).

Details about P systems with symport/antiport rules can be found in [9];
a complete formalization of the syntax and the semantics of these systems is
provided in [10].

We recall from [3], [4] the best known results dealing with the power of P
systems with symport/antiport.

Theorem 1. NRE = NOPm(symr, antit), for (m, r, t) ∈ {(1, 1, 2), (3, 2, 0),
(2, 3, 0)}.

The optimality of these results is not known. In particular, it is an open
problem whether or not also the families NOPm(symr, antit) with (m, r, t) ∈
{(2, 2, 0), (2, 2, 1)} are equal to NRE.

Note that we do not have here a universality result for systems of type
(m, 1, 1). Recently, such a surprising result was proved in [2]:

Theorem 2. NRE = NOP9(sym1, anti1).

Thus, at the price of using nine membranes, uniport rules together with
antiport rules as common in biology (one chemical exits in exchange with other
chemical) suffice for obtaining the Turing computational level. The question
whether or not the number of membranes can be decreased was formulated as
an open problem in [2].

4 Universality with Six Membranes

We (partially) solve the problem from [2], by improving the result from Theorem
2: the number of membranes can be decreased to six – but we do not know
whether this is an optimal bound or not.

Theorem 3. NRE = NOP6(sym1, anti1).

Proof. Let us consider a counter automaton M = (Q, F, p0, C, cout, S) as speci-
fied in Section 2. We construct the symport/antiport P system

Π = (V, µ, w1, w2, w3, w4, w5, w6, E, R1, R2, R3, R4, R5, R6, io),

where:

V = Q ∪ {cq | c ∈ C, q ∈ Q, and (p → q, +c) ∈ S}
∪ {c′q, dc,q | c ∈ C, q ∈ Q, and (p → q,−c) ∈ S}
∪ {c′′q , d′c,q | c ∈ C, q ∈ Q, and (p → q, c = 0) ∈ S}
∪ {a1, a2, a3, a4, b1, b2, i1, i2, i3, i4, i5, h, h′, h′′, n1, n2, n3, n4, #1, #3},

µ = [1[2 [3[4 ]4]3 [5[6 ]6]5 ]2]1,
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w1 = b1b2#3,

w2 = a1i1i2i4i5n1n2n3n4h
′′#1,

w3 = a2a3i3,

w4 = a4#3,

w5 = h′,
w6 = λ,

E = V − {#1, b1},
io = 6,

Ri = R′
i ∪ R′′

i ∪ R′′′
i , where 1 ≤ i ≤ 6.

Each computation in M will be simulated by Π in three main phases; the first
phase will use rules from R′

i, 1 ≤ i ≤ 6, R′′
i contains the rules for the second

phase, and R′′′
i are the rules used for the third phase. These phases perform the

following operations: (1) preparing the system for the simulation, (2) the actual
simulation of the counter automaton, and (3) terminating the computation and
moving the relevant objects into the output membrane.

We give now the rules from the sets R′
i, R

′′
i , R′′′

i for each membrane together
with explanations about their use in the simulation of the counter automaton.

Phase 1 performs the following operations: we bring in membrane 2 an arbi-
trary number of objects q ∈ Q that represent the states of the automaton, then
we also bring in membrane 4 an arbitrary number of objects dc,q and d′c,q that
will be used in the simulation phase for simulating the rules (p → q,−c) and
(p → q, c = 0), respectively. The rules used in this phase are as follows:

R′
1 = {(b1, out; X, in) | X ∈ Q ∪ {dc,p, d

′
c,p | c ∈ C, p ∈ Q}} ∪ {(b1, in)},

R′
2 = {(b2, out; X, in) | X ∈ Q ∪ {dc,p, d

′
c,p | c ∈ C, p ∈ Q}} ∪ {(b2, in)}

∪ {(a1, out; b1, in), (b2, out; #3, in), (a2, out; a1, in), (a2, out; #3, in)},
R′

3 = {(a3, out; d, in) | d ∈ {dc,p, d
′
c,p | c ∈ C, p ∈ Q}} ∪ {(a3, in)}

∪ {(a2, out; b2, in), (a4, out, b1, in), (#3, in), (#3, out)},
R′

4 = {(a4, out; d, in) | d ∈ {dc,p, d
′
c,p | c ∈ C, p ∈ Q}} ∪ {(a4, in)}

∪ {(a4, out; b2, in), (b2, out; a3, in)},
R′

5 = {(h′, out; h′′, in), (h′′, out, h′, in)},
R′

6 = ∅.
The special symbol b1 brings from the environment the objects q, dc,q, d′c,q

by means of the rules (b1, out; X, in), and at the same time the symbol b2 enters
membrane 2 using the rule (b2, in). At the next step b1 comes back in the system,
while b2 moves the object that was introduced in membrane 1 in the previous
step, q, dc,q, or d′c,q into membrane 2 by means of the rules (b2, out; X, in). We
can iterate these steps since we reach a configuration similar with the original
configuration.

If the objects moved from the environment into membrane 2 are versions
of d, then those objects are immediately moved into membrane 4 by the rules
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(a3, out; d, in) ∈ R′
3 and (a4, out; d, in) ∈ R′

4. One can notice that in the sim-
ulation phase these special symbols that we bring in the system in this initial
phase are used to simulate some specific rules from the counter automaton. A
difficulty appears here because there are rules that will allow such a symbol to
exit membrane 1 bringing in another such symbol (this leads to a partial simu-
lation of rules from the counter automaton). To solve this problem we make sure
that the symbols that we bring in the system do end up into one of membranes
2 or 4: if an object q, dc,q, or d′c,q exits membrane 1 (using a rule from R′′

1 )
immediately after it is brought in, then b2 which is in membrane 2 now has to
use the rule (a2, out; #3, in) ∈ R′

2 and then the computation will never halt since
#3 is present in membrane 2 and will move forever between membranes 2 and 3
by means of (#3, in), (#3, out) from R′

3.
After bringing in membrane 2 an arbitrary number of symbols q and in

membrane 4 an arbitrary number of symbols dc,q, d
′
c,q we pass to the second

phase of the computation in Π , the actual simulation of rules from the counter
automaton. Before that we have to stop the “influx” of special symbols from the
environment: instead of going into environment, b1 is interchanged with a1 from
membrane 2 by means of the rule (a1, out; b1, in); at the same step b2 enters
the same membrane 2 by (b2, in). Next b2 is interchanged with a2 by using
the rule (a2, out; b2, in) ∈ R′

3, then in membrane 4 the same b2 is interchanged
with a4 by means of (a4, out; b2, in) ∈ R′

4; simultaneously, for membrane 2 we
apply (a2, out; a1, in). At the next step we use the rules (a4, out, b1, in) and
(b2, out; a3, in) from R′

4.
There are two delicate points in this process. First, if b2 instead of bring-

ing in membrane 2 the objects from environment starts the finishing pro-
cess by (a2, out; b2, in) ∈ R′

3, then at the next step the only rule possible is
(a2, out; #3, in) ∈ R′

2, since a1 is still in membrane 2, and then the computation
will never render a result. The second problem can be noticed by looking at the
rules (a4, in) and (a4, out; b1, in) associated with membranes 4 and 3, respec-
tively: if instead of applying the second rule in the finishing phase of this step,
we apply the rule of membrane 4, then the computation stops in membranes 1
through 4, but for membrane 5 we will apply the rules from R′

5 continuously.

The second phase starts by introducing the start state of M in membrane
1, then we simulate all the rules from the counter automaton; to do this we use
the following rules:

R′′
1 = {(a4, out; p0, in), (#1, out), (#1, in)} ∪ {(p, out; cq, in), (p, out; c′q, in),

(dc,q, out; q, in), (p, out; c′′q , in), (d′c,q, out; q, in) | p, q ∈ Q, c ∈ C},
R′′

2 = {(q, out; cq, in), (#1, out; cq, in), (n1, out; c′q, in), (dc,q, out; n4, in),
(i1, out; c′′q , in), (dc,q, out; #3, in), (d′c,q, out; i5, in), (d′c,q, out; #3, in) |
q ∈ Q, c ∈ C}

∪ {(a4, out), (n2, out; n1, in), (n3, out; n2, in), (n4, out; n3, in),
(#1, out; n4, in), (i2, out; i1, in), (i3, out; i2, in), (i4, out; i3, in),
(i5, out; i4, in)},
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R′′
3 = {(c′q, in), (dc,q, out; cα, in), (i3, out; c′′q , in), (d′c,q, out; cα, in),

(d′c,q, out; i3, in) | q, α ∈ Q, c ∈ C},
R′′

4 = {(dc,q, out; c′q, in), (#3, out; c′q, in), (d′c,q, out; c′′q , in), (#3, out; c′′q , in) |
q ∈ Q, c ∈ C},

R′′
5 = ∅,

R′′
6 = ∅.

We explain now the usage of these rules: we bring in the system the start
state p0 by using the rules (a4, out) ∈ R′′

2 and then (a4, out; p0, in) ∈ R′′
1 ; a4

should be in membrane 2 at the end of the step 1 if everything went well in the
first phase.

We are now ready to simulate the transitions of the counter automaton.
The simulation of an instruction (p → q, +c) is done as follows. First p is

exchanged with cq by (p, out; cq, in) ∈ R′′
1 , and then at the next step q is pushed

in membrane 1 while cq enters membrane 2 by means of the rule (q, out; cq, in) ∈
R′′

2 . If there are no more copies of q in membrane 2, then we have to use the rule
(#1, out; cq, in) ∈ R′′

2 , which kills the computation. It is clear that the simulation
is correct and can be iterated since we have again a state in membrane 1.

The simulation of an instruction (p → q,−c) is performed in the fol-
lowing manner. The state p is exchanged in this case with c′q by the rule
(p, out; c′q, in) ∈ R′′

1 . The object c′q is responsible of decreasing the counter c
and then moving the automaton into state q. To do this c′q will go through the
membrane structure up to membrane 4 by using the rules (n1, out; c′q, in) ∈ R′′

2 ,
(c′q, in) ∈ R′′

3 , and (da,q, out; c′q, in) ∈ R′′
4 . When entering membrane 2, it starts a

“timer” in membrane 1 and when entering membrane 4 it brings out the symbol
dc,q which will perform the actual decrementing of the counter c.

The next step of the computation involves membrane 3, by means of the rule
(dc,q, out; cα, in) ∈ R′′

3 , which is effectively decreasing the content of counter
c. If no more copies of cα are present in membrane 2, then dc,q will sit in
membrane 3 until the object n, the timer, reaches the subscript 4 and then
#3 is brought in killing the computation, by means of the following rules from
R′′

2 : (n2, out; n1, in), (n3, out; n2, in), (n4, out; n3, in), (#1, out; n4, in). If there is
at least one copy of cα in membrane 2, then we can apply (dc,q, out; n4, in) ∈ R′′

2

and then we finish the simulation by bringing q in membrane 1 by means of
(dc,q, out; q, in) ∈ R′′

1 . If dc,q was not present in membrane 4, then #3 will be
released from membrane 4 by (#3, out; c′q, in) ∈ R′′

4 . It is clear that also these
instructions are correctly simulated by our system, and also the process can be
iterated.

It remains to discuss the case of rules (p → q, c = 0) from the counter
automaton. The state p is replaced by c′′q by (p, out; c′′q , in) ∈ R′′

1 , then this
symbol will start to increment the subscripts of i when entering membrane 2:
(i1, out; c′′q , in) ∈ R′′

2 , at the next step the subscript of i is incremented in mem-
brane 1 and also i3 is pushed in membrane 2 by means of (i3, out; c′′q , in) ∈ R′′

3 .
At the next step the special marker d′c,q is brought out of membrane 4 by
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means (d′c,q, out; c′′q , in) ∈ R′′
4 and the subscript of i is still incremented by

(i3, out; i2, in) ∈ R′′
2 . Now d′c,q performs the checking for the counter c (whether

it is zero or not): if there is at least one cα present, then d′c,q will enter mem-
brane 2, and at the next step will bring #3 from membrane 1 since the subscript
of i did not reach position 5; on the other hand, if there are no copies of c in
membrane 2, then d′c,q will sit unused in membrane 3 for one step until i3 is
brought from membrane 1 by (i4, out; i3, in) ∈ R′′

2 , then we apply the follow-
ing rules: (i5, out; i4, in) ∈ R′′

2 and (d′c,q, out; i3, in) ∈ R′′
3 . Next we can apply

(d′c,q, out; i5, in) ∈ R′′
2 and then in membrane 1 we finish the simulation by us-

ing (d′c,q, out; q, in) ∈ R′′
1 . One can notice that all the symbols are in the same

place as they were in the beginning of this simulation (i3 is back in membrane
3, i1, i2, i4, i5 are in membrane 2, etc.), the only symbols moved are one copy of
d′c,q which is now in the environment and c′′q which is in membrane 4. It is clear
that we can iterate the process described above for all the types of rules in the
counter automaton, so we correctly simulate the automaton.

The third phase, the finishing one, will stop the simulation and move the
relevant objects into the output membrane. Specifically, when we reach a state
p ∈ F we can use the following rules:

R′′′
1 = {(p, out; h, in) | p ∈ F},

R′′′
2 = {(h, in)},

R′′′
3 = ∅,

R′′′
4 = ∅,

R′′′
5 = {(h′, out; h, in), (h′′, out; h, in), (h, in)}

∪ {(h, out; coutα, in) | α ∈ Q},
R′′′

6 = {(coutα, in) | α ∈ Q}.
We first use (p, out; h, in) ∈ R′′′

1 , then h enters membrane 2 by (h, in) and at
the next step h stops the oscillation of h′ and h′′ by putting them together in
membrane 2 by means of (h′, out; h, in) ∈ R′′′

5 or (h′′, out; h, in) ∈ R′′′
5 . After this

h begins moving the content of output counter cout into membrane 5 by using
(h, out; cα, in) ∈ R′′′

5 . When the last cα enters membrane 6 by using (cα, in) ∈ R′′′
6

the system will be in a halting state only if a correct simulation was done in
phases one and two, so the counter automaton was correctly simulated. This
completes the proof.

5 Final Remarks

One can notice that membrane 6 was used only to collect the output. The same
system without membrane 6 will simulate in the same way the counter automa-
ton, but, when reaching the halt state will also contain the symbol h in the
output membrane 5. This suggests that it could be possible to use a similar
construct to improve the result from Theorem 3 to a result of the form:

Conjecture: NOP5(sym1, anti1) = RE.
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Obviously, P systems with minimal symport/antiport rules and using only
one membrane can compute at most finite sets of numbers, at most as large
as the number of objects present in the system in the initial configuration: the
antiport rules do not increase the number of objects present in the system, the
same with the symport rules of the form (a, out), while a symport rule of the
form (a, in) should have a ∈ V − E (otherwise the computation never stops,
because the environment is inexhaustible).

The family NOP2(sym1, anti1) contains infinite sets of numbers. Consider,
for instance, the system

Π = ({a, b}, [1[2 ]2]1, a, λ, {b}, R1, R2, 2),
R1 = {(a, out; b, in), (a, in)},
R2 = {(a, in), (b, in)}.

After bringing an arbitrary number of copies of b from the environment, the
object a gets “hidden” in membrane 2, the output one.

An estimation of the size of families NOPm(sym1, anti1) for m = 2, 3, 4, 5
remains to be found.

The P systems with symport and antiport rules are interesting from several
points of view: they have a precise biological inspiration, are mathematically
elegant, the computation is done only by communication, by moving objects
through membranes (hence the conservation law is observed), they are compu-
tationally complete. Thus, they deserve further investigations, including from
the points of view mentioned above.
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